贺利氏连续测温仪用到的红外线是一种电磁波,具有与无线电波及可见光一样的本质,波长在0.76~100μm之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。
红外线辐射是自然界存在的一种为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。
一切温度在零度(-273.15K°)以上的物体,都会因自身的分子运动而不停地向周围空间辐射出红外线,物体的红外辐射能量的大小及其按波长的分布与它的表面温度有着十分密切的关系。
通过红外线辐射的探测器将物体辐射的功率信号转换成电信号后(对物体自身辐射的红外能量的测量),就能准确地测定它的表面温度,或者通过成像装置的输出信号就可以*一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理,传至显示屏上,得到与物体表面热分布相应的热像图。
运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断,亦即红外辐射检测的基本原理。
可知热扩散率(发射率)与材料性质有关。对于均匀无缺陷的材料,a为常数。当在均匀材料中有缺陷存在时,缺陷相当于具有另一热扩散率的材料,因而有缺陷部分与无缺陷部分的热状态不同,表现在材料表面有不同。
热传导的差异在材料表面形成时间和空间上的温度梯度,即温度扰动:△T=Tf-T,式中:△T-温度扰动;Tf-有缺陷处的材料表面温度;T-无缺陷处的材料表面温度。△T不仅与材料的热扩散率有关,而且与缺陷的几何尺寸和埋藏深度有关。